

北京 国家会议中心 2018年 9月10-12日 2018.hexagonchina.com.cn

塑造智慧变革

岩体结构探查方法与 危石预测系统

刘洪亮

单位 山东大学 日期 2018年9月

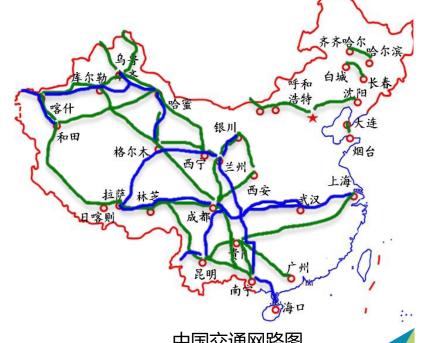
▶ 山东大学采用徕卡产品开展大量地下工程检测工作,取得众多成果

工程名称	工程评价
四川成兰铁路	中国最难修建山区铁路之一
成昆铁路特克隧道	强岩溶发育施工决策困难
新京张铁路正盘台隧道	2022年冬奥重点配套工程
吉林引松供水工程	水利部重点工程
江西永莲隧道	卡脖子工程,国内罕见江西最难
山东浆水泉隧道	全国双洞单向四车道最长的山岭公路 隧道,"山东第一隧"
•••	

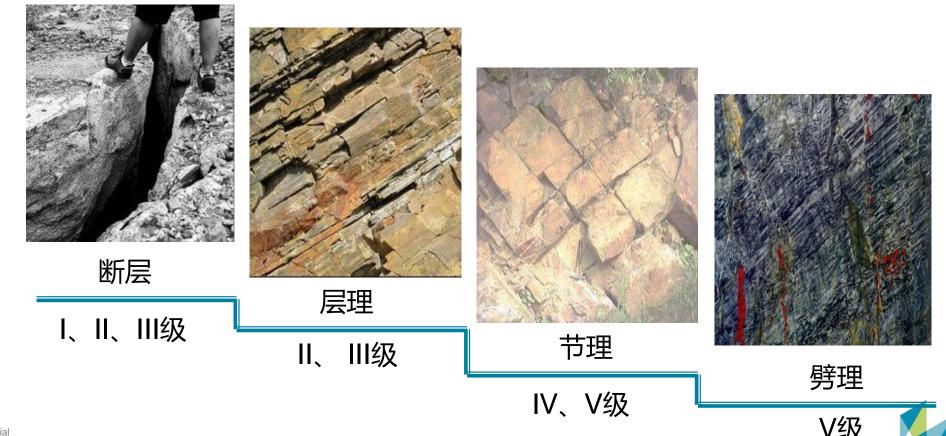
目录

- ◆ 研究背景与意义
- ◆ 岩体结构信息获取设备
- ◆ 岩体结构信息分析软件
- ◆ 工程应用

岩体结构探查方法与危石预测系统


◆ 研究背景与意义

◆ 研究背景与意义


- 我国已成为世界上隧道建设规模、难度和数量最大的国家
 - 未来10年,公路铁路领域将新建隧道上万公里
 - 60多个重点水电工程和数十个调水工程中将修建数百条隧道

中国交通网路图

- 隧道围岩遭遇大量非连续地质体切割形成非稳定岩块结构
- 施工揭露往往破坏结构面原有平衡状态,威胁施工人员生命安全

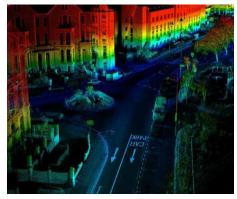
◆ 研究背景与意义

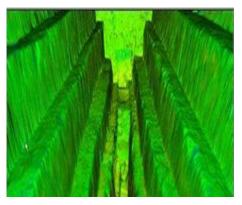
已有岩体结构信息获取手段:

● 地质罗盘

磁偏角校正→方位测量→走向测量→倾向测量→倾角测量接触式测量、效率低、危险大、信息获取不全面

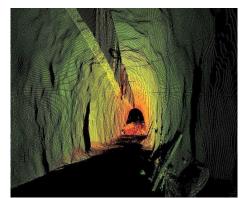
● 摄影测量


基准点测量→架设补光灯→布设标记点→人工拍摄精度低、适应性弱、操作繁琐



激光扫描技术:

- > 激光扫描技术在工程建设领域有较广泛的应用
- 由于激光扫描技术建模精度高,操作简单,多尘环境其适应能力较强,是目前 最适合的岩体结构信息获取方法



地形测绘

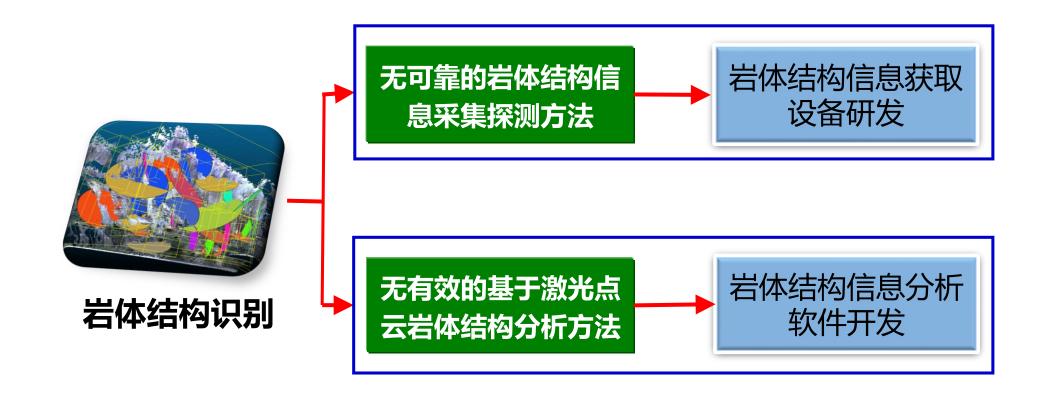
桥梁测量

隧道工程

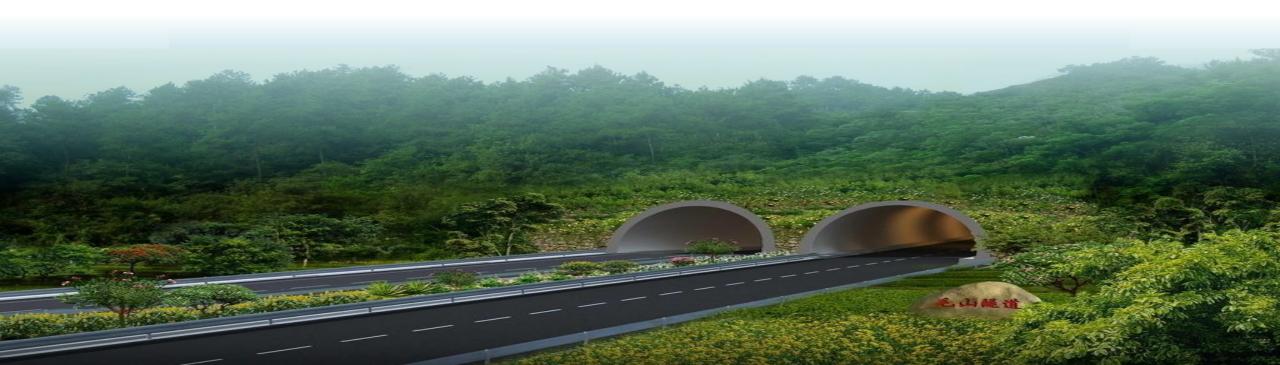
激光扫描技术在岩体结构识别应用困境:

- ▲ 激光扫描仪及配套设备搬运困难。
- ▲ 真彩色模型受补光条件影响易出现
- ▲ 现场数据处理时效性差
- △ 人员、设备位于裸露围岩下方,极为危险

△ 尚无基于激光扫描技术的岩体结构面识别方法


补光不理想出现色彩差异

在裸露围岩下方作业

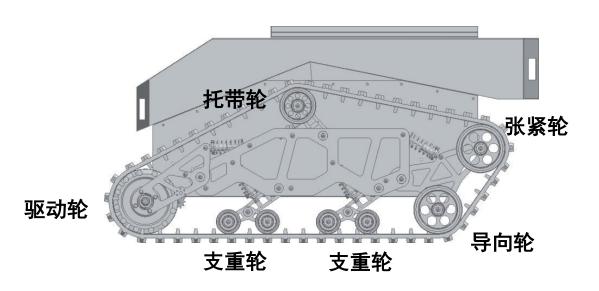


岩体结构探查方法与危石预测系统

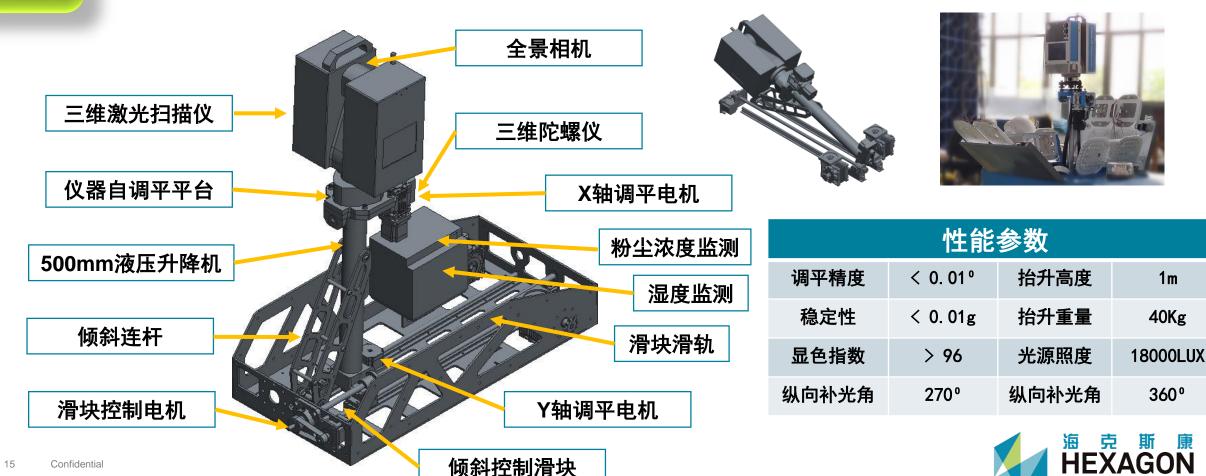
◆岩体结构信息获取设备

岩体结构自动化探测装备

岩体结构信息自动化探测装备有行进结构、自动探测、智能行进、障碍感应、远程操控 和远程传输功能,实现了岩体结构表面信息获取的无人化、智能化、快速化



结构 设计 ➤ 采用克里斯蒂+玛蒂尔达底盘悬架机构设计,跨距超过400mm,跨高超过200mm, 载重超过150kg,过泥深度超过400mm,保障机体在隧道环境高效运行

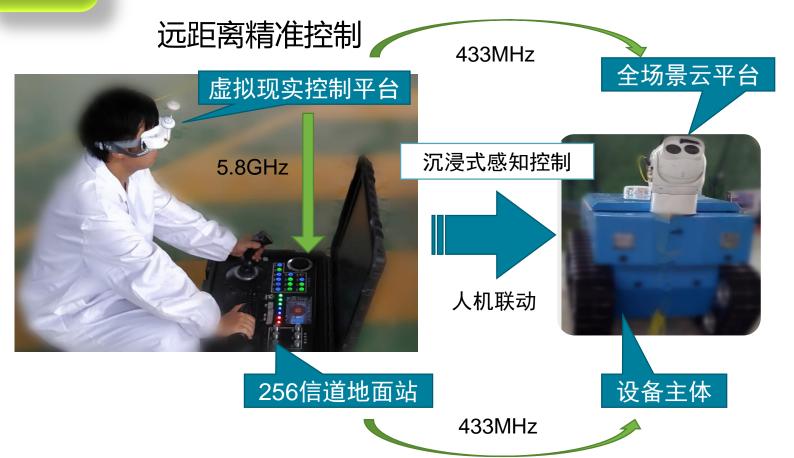


配置 名称	履带式底盘	轮式底盘	猫步底盘
	最大负载	最大负载	最大负载
	150KG	100KG	25KG
相同 规格	最大爬坡角度	最大爬坡角度	最大爬坡角度
	30°	15°	10°
底盘	最大跨高能力	最大跨高能力	最大跨高能力
	200mm	100mm	300mm
性能	最大越距能力	最大越距能力	最大越距能力
	400mm	50mm	300mm
参数	最大过泥深度 400mm	最大过泥深度 100mm	无数据

克里斯蒂+玛蒂尔达 底盘悬架设计

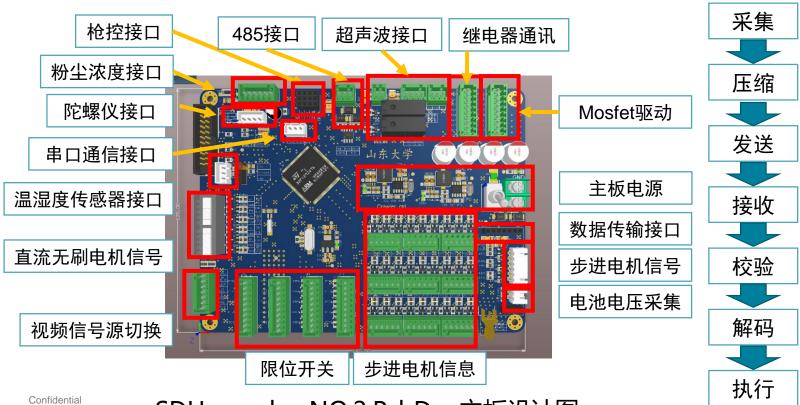
自动 探测 > 采用连杆滑块机构链接真彩三维激光扫描仪,利用三维陀螺仪控制自调平装置,装 备六向10面板光照补偿系统,实现真彩激光扫描系统有效工作

1_m


障碍 感应 > 采用全场景超声传感器,感知机体20mm-500mm范围内高度超过200mm障碍物, 实时传输障碍位置信息至控制端,有效防止机体碰撞损坏

多方式传感器技术指标 全景超 普通超 技术指标 激光测距 声测距 声测距 单点 测量角度 360° 20° 最远距离 1米内 18_m 3-8米 灵敏度 20mm 100mm 3_{mm} 抗粉尘干 PM10 PM10 PM10 扰能力 <1000 <700 <300

远程 控制 ▶ 自主开发256信道433MHz地面站控制协议,4信道2.4GHz枪式控制协议,4信道 5.8GHz虚拟现实控制协议,结合基于VR技术的云平台人机联动,实现复杂环境


无线协议技术指标			
技术指标	433	2. 4	5. 8
	MHz	GHz	GHz
频带	1. 75	100	160
	M Hz	M Hz	MHz
绕射能力	强	中	弱
通讯距离	1000	30	5
	m	m	m
噪声	\ J \	中	大

数据 传输 ▶ 自主开发 SD YT18814 (和效验) 数据传输协议, 自主研发设计 SDU crawler.PcbDoc、SDU crawler NO.2.PcbDoc数据通信传输电路板,

实现设备复杂环境下实时的多源数据传输通信

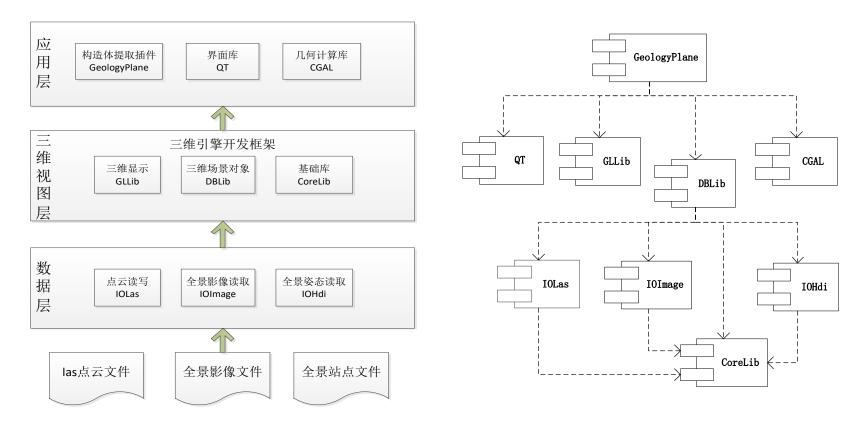
性能参数对比			
技术指标	新式传输	常规传输	
开放区域 传输距离	1000 m	800 m	
隧道环境 传输距离	500 m	150 m	
传输速度	20 Mb/s	5 Mb/s	
los	90 dB	80 dB	
数据信道	256	8	

岩体结构探查方法与危石预测系统

◆ 岩体结构信息分析软件

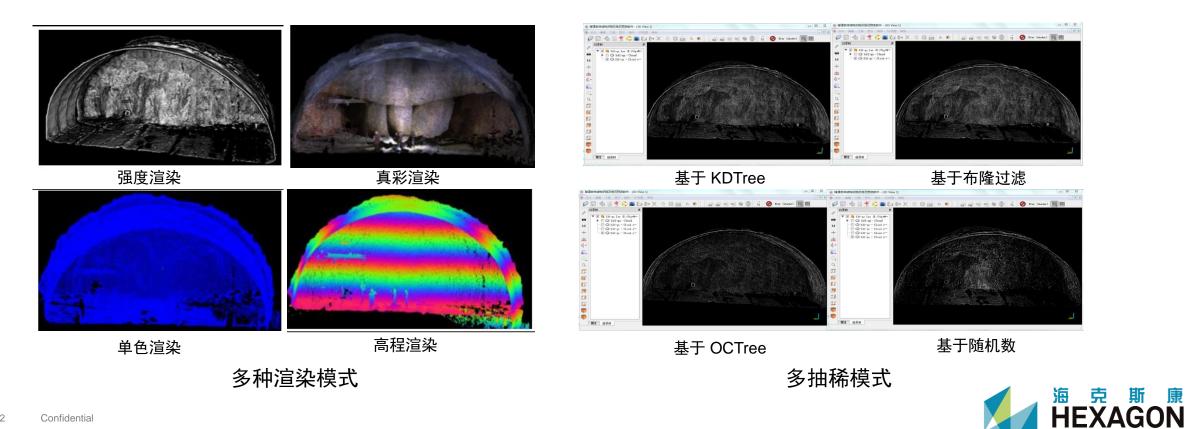
◆岩体结构信息分析软件

- ➤ 开发GeologyPlane岩体结构信息分析软件,具有三维建模、点云测量、结构面识别、结构面分析、块体识别、块体稳定性分析等功能
- > 实现岩体结构分析及致灾巨石预测预警

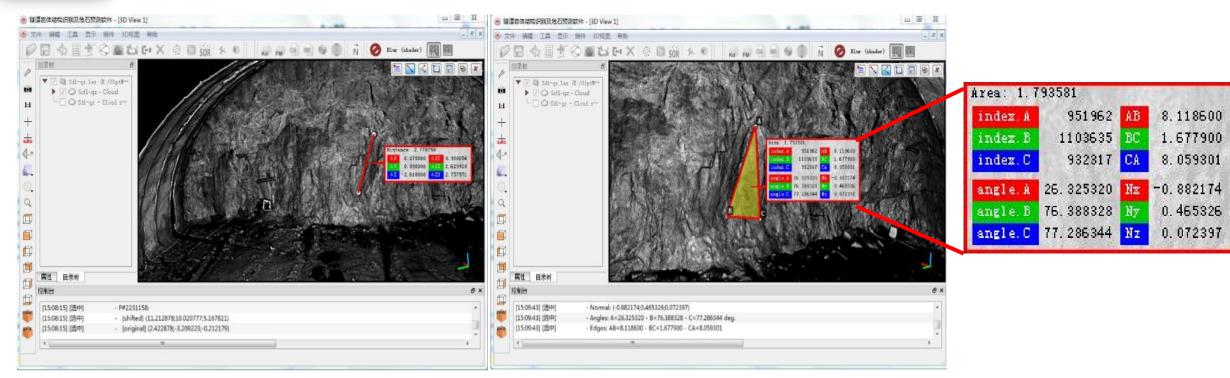


◆岩体结构信息分析软件

▶ 软件总体构架分为数据层、三维视图层、应用层。软件分基础库、读写库、解析库、场景对象库等,各组件构成有序的逻辑应用关系

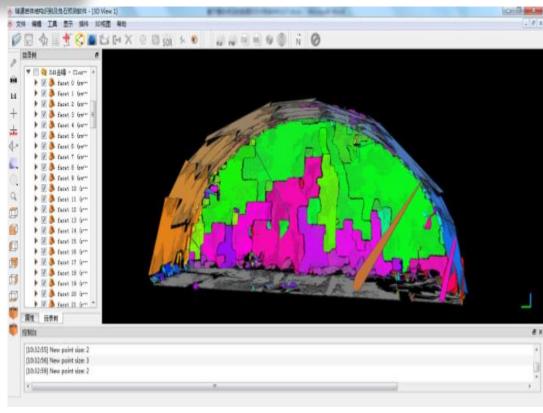

软件构架

软件组件逻辑应用关系

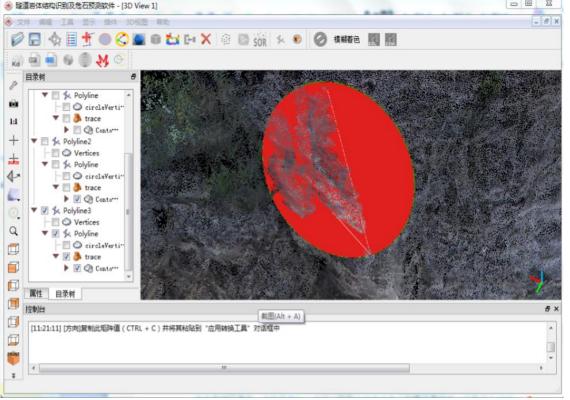


三维 建模 > 软件具有真彩点云处理、点云抽稀简化、点云去噪过滤、点云绝对坐标转换、三 维点云渲染等功能,构建了岩体结构信息分析的高精度基础

点云 测量 > 软件具有点云坐标拾取查看,两点之间距离和方向量测,多点面积、顶点 角度和 面方向测量功能,实现了非接触高精度岩体结构测量


两点测量

海 克 斯 康 HEXAGON

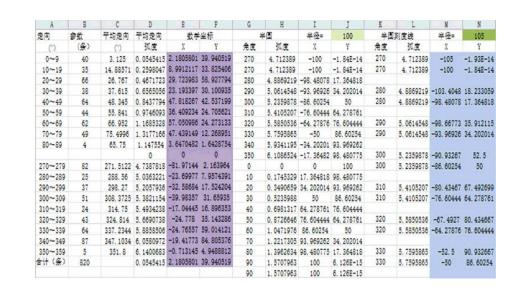


结构面 识别

软件结构面识别工具,具备根据结构面或其迹线识别结构面功能,构建可视化的 结构面圆盘三维空间形态,实现岩体结构面信息识别

基于KD-Tree自动识别

结构面 分析

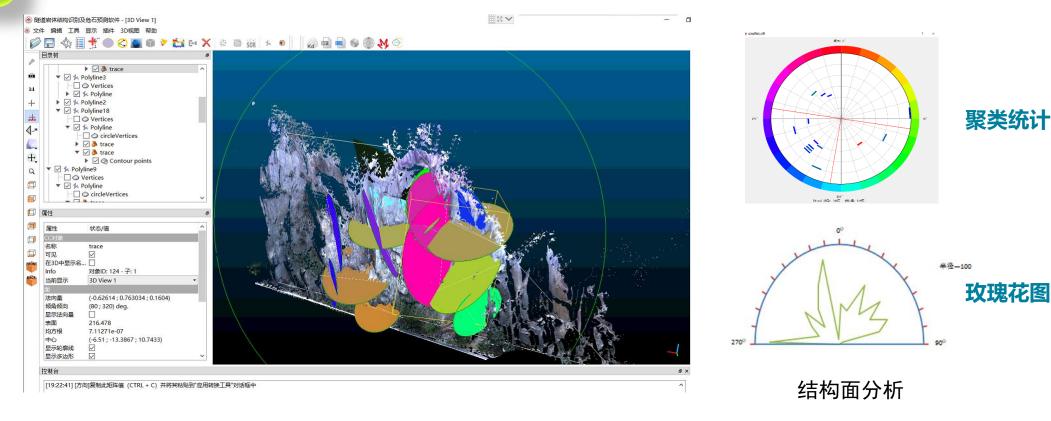

软件具备产状信息分析模块,通过提取结构面走向、倾向、倾角等信息,利用空 间解析几何法求解结构面产状,实现岩体结构面信息数字化获取

1) 结构面平面方程:
$$N_x X + N_y Y + N_z Z + D = 0$$

2) 结构面走向方程:
$$Z=0$$

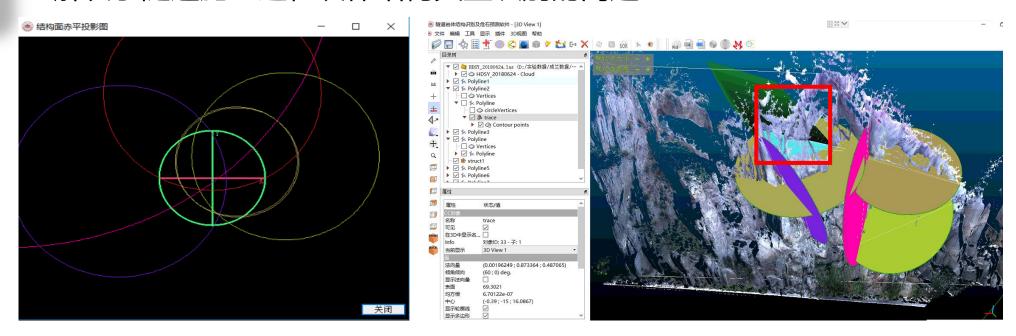
3) 结构面倾向方程:
$$N_x X + N_y Y + D = 0$$

4) 结构面倾角方程:
$$\cos \delta = \frac{|N_z|}{\sqrt{N_x^2 + N_y^2 + N_z^2}}$$


结构面产状

结构面 分析

> 软件获取多组结构面信息,能够对结构面信息进行统计、聚类分析,以赤平投影 图、玫瑰图、极点图等方式表达,实现对岩体结构面信息地质编录与分析

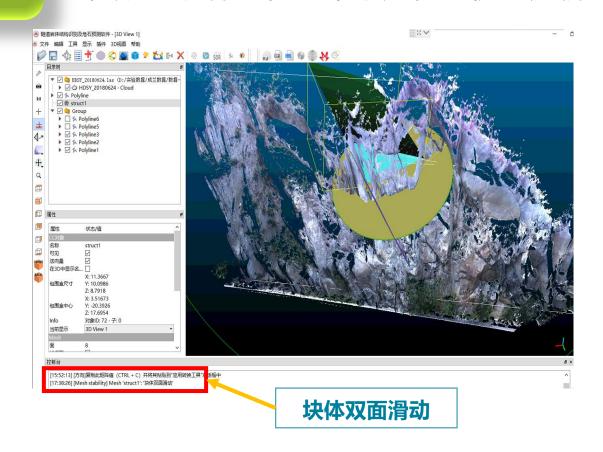


块体 识别

> 软件建立了考虑掌子面位置及新生结构面作用的块体识别方法 解决了隧道施工过程块体结构矢量识别的问题

第i个四面体体积:

总体积为:


$$V_{i} = \frac{1}{6} \left(-x_{i3} y_{i2} z_{i1} + x_{i2} y_{i3} z_{i1} + x_{i3} y_{i1} z_{i2} - x_{i1} y_{i3} z_{i2} - x_{i2} y_{i1} z_{i3} + x_{i1} y_{i2} z_{i3} \right) \qquad V_{total} = \sum_{i=0}^{n} V_{i} z_{i3} + \sum_{i=0}^{n} V_{i} z_{i4} + \sum_{i=0}^$$

稳定 分析

> 软件构建了3种块体典型运动模式的几何判识及稳定性分析模型 实现了块体几何学平动失稳的快速分析

直接坠落	$\hat{\mathbf{s}} = \frac{\vec{F}_{zd}}{ F_{zd} } \vec{F}_{zd} \bullet \hat{\mathbf{v}}_{i} \geqslant 0$
单面滑动	$\hat{\mathbf{s}} = \frac{(\hat{\mathbf{v}}_{i} \times \vec{F}_{zd}) \times \hat{\mathbf{v}}_{i}}{\begin{vmatrix} \hat{\mathbf{v}}_{i} \times \vec{F}_{zd} \end{vmatrix}} \hat{F}_{zd} \bullet \hat{\mathbf{v}}_{i} < 0$ $\hat{\mathbf{v}}_{i} \times \vec{F}_{zd} \qquad \hat{\mathbf{s}} \bullet \hat{\mathbf{v}}_{j} \geqslant 0$
双面滑动	$ \overset{\wedge}{\mathbf{s}} = \frac{\overset{\wedge}{\mathbf{v}_{i}} \times \overrightarrow{F}_{zd} \times \overset{\wedge}{\mathbf{v}_{i}}}{\overset{\wedge}{\mathbf{v}_{i}} \times \overrightarrow{F}_{zd}} \xrightarrow{\overset{\wedge}{\mathbf{v}_{i}}} F_{zd} \overset{\wedge}{\mathbf{v}_{j}} < 0 $ $ \overset{\wedge}{\mathbf{v}_{i}} \times \overrightarrow{F}_{zd} \xrightarrow{\overset{\wedge}{\mathbf{v}_{i}}} F_{zd} \overset{\wedge}{\mathbf{v}_{j}} > 0 $

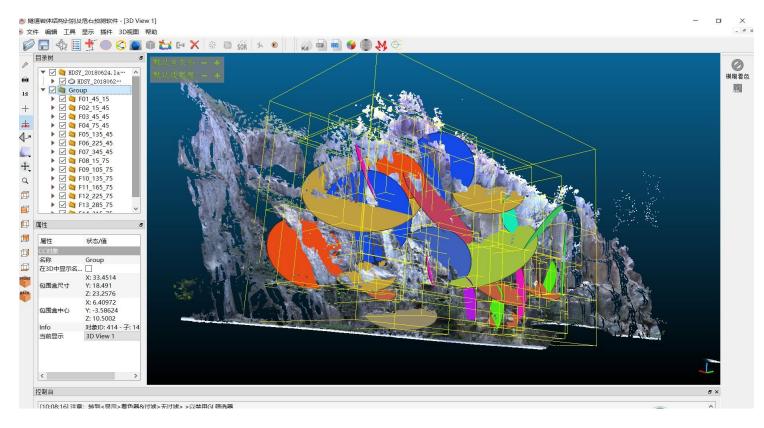
岩体结构探查方法与危石预测系统

◆ 工程应用

工程案例一: G213国道K741+550处边坡

- ▶ 213国道四川段,对于阿坝藏族羌族自治州的居民而言意义重大
- 这条国道中的汶川—都江堰段在网络上被评为了中国十大夺命路段之一,极易发生山体滑坡、 泥石流等灾害

G213国道山体滑坡



◆ 工程应用

工程案例一: G213国道K741+550处边坡

> 岩体结构分析

岩体结构统计			
结构面 数量	56	块体 数量	7
结构面 平均半径	3.43m	块体平 均体积	1.63 立方米
优势结构 面倾角	51°	单面滑 动失稳	3
优势结构 面倾向	43°	双面滑 动失稳	1
结构面平 均间隔	2.17m	坠落 失稳	0

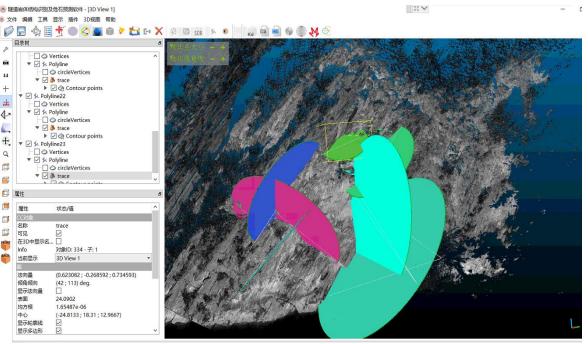
◆ 工程应用

工程案例一: G213国道K741+550处边坡

- 于边坡挂设防护网,对高危位置进行喷锚处理
- > 有效预防滑坡、滚石等地质灾害,保障了人们群众生命财产安全

挂设钢筋防护网

喷锚作业



◆ 工程应用

工程案例二: 滨莱高速改扩建工程

- ▶ 目前滨莱高速博山到莱芜段的时速仅为80公里/小时。改扩建后设计速度将提升至100-120公里/小时
- > 对高陡边坡进行激光扫描,准确进行危险巨石判识,有效对施工进行指导

谢 谢