塑造智慧变革

HEXAGON 海克斯康

北京 国家会议中心 2018年 9月10-12日 2018.hexagonchina.com.cn

Leica GS18 T World's Fastest GNSS RTK Rover

Dr. Xiaoguang Luo, GNSS Product Engineer

10–12, September, 2018

Agenda

- 1. Customer's pain points in GNSS RTK surveying
- 2. Tilt compensation solution of the Leica GS18 T
 - a) Key technologies and advantages
 - b) World's fastest GNSS RTK rover Why?
- 3. Technological innovations
 - a) Advanced GNSS signal tracking
 - b) IMU-based tilt compensation
- 4. User benefits
 - a) Increased productivity
 - b) Superior RTK performance
 - c) Enhanced user experience
- 5. Conclusions

You are not solving customer's problems until you understand his pain points"

... Bernhard Richter (GNSS Business Director at Leica Geosystems)

Customer's pain points in GNSS RTK surveying

1. Levelling the pole

2. Measuring obstructed points

3. Time-consuming calibrations

4. Magnetic disturbances

5. Limited tilt compensation range

Tilt compensation solution of the Leica GS18 T

- Key technologies
 - Using precise IMU measurements (instead of magnetometer)
 - Sophisticated GNSS/INS integration with quality control mechanisms
- Main advantages
 - Completely free from on-site calibrations
 - Immune to magnetic disturbances
 - Applicable at large tilt angles (> 30 degrees)

IMU: inertial measurement unit INS: inertial navigation system

Why is the Leica GS18 T world's fastest GNSS RTK rover?

Technological innovations

Advanced GNSS signal tracking

- Key components
 - High-performance patch antenna with multiple design patents
 - 555-channel ME7 with faster signal acquisition and higher sensitivity
- Main advantages
 - Superior low-elevation tracking capabilities
 - Sub-millimetre phase centre stability
 - Multi-constellation and multi-frequency GNSS

ME7: measurement engine 7

Advanced GNSS signal tracking

When compared to Rover A (a surveygrade GNSS smart antenna), GS18 T reduces the total number of cycle slips by 40% under heavy canopy.

IMU-based tilt compensation

• Assumptions

- Surveying pole is a rigid body
- Length of the pole is precisely known
- Pole tip position derived using
 - GNSS phase centre position
 - Length of the pole (*l*)
 - Attitude of the pole
- Interpretation of pole attitude
 - Tilt (*t*) and direction of tilt (λ)
 - GS heading (γ)

GS18 T tilt information panel

└ Current GS position		099 m (0) 17:27
Position Baseline Speed		
Overall tilt quality	0°44'02"	
Tilt	13°19'55"	+
Tilt quality	0°07'21"	ι
Direction of tilt	258°25'24"	2
Direction of tilt quality	0°50'57"	Λ
GS heading	37°51'45"	1/
GS heading quality	0°31'12"	Y
ОК		Page

GNSS/INS integration

- Each IMU is factory calibrated over the whole operating temperature range
- Consistency checks between GNSS and INS for high system robustness
- Automatic start of tilt compensation through metre-level movements
- Total error budget behaves according to the error propagation law

IMU: inertial measurement unit INS: inertial navigation system

 $\sigma_{Total} = \sqrt{\sigma_{GNSS}^2 + \sigma_{INS}^2}$

User benefits

With the Leica GS18 T, high-precision RTK becomes more applicable...

Without the need to level the pole, points can be measured faster...

3D RMS error

3D accuracy decreases slightly by 3 mm (RMS: root mean square)

HEXAGON

Using tilt compensation, the instantaneous method enables the fastest RTK measurement with high accuracy...

0.04

0.03

0.01

0.00

6

1

Static (30 s):

Mean: 0.012 m

Std. dev.: 0.006 m

11 16

21 26 31 36

RMS error of tilt-compensated RTK positions

Similar accuracy between 30-static and instantaneous measurements

2D errors of tilt-compensated RTK positions

Instantaneous:

Mean: 0.011 m

56

Std. dev.: 0.006 m

----Static (30 s) ----Instantaneous

41 46 51

61 66 71 76 81 86 91 96

The Leica GS18 T is applicable at large tilt angles...

3D accuracy below 2 cm with a realistic uncertainty level

CQ: coordinate quality

Superior RTK performance

With the Leica GS18 T, RTK-fixed positions are **more available and more accurate**...

Test environment with strong multipath and magnetic disturbances

Superior RTK performance

The IMU-based tilt compensation provides **more accurate** RTK positions than magnetometer-based approaches...

Rover B with magnetometerbased tilt compensation

Test environment with magnetic disturbances

Rover B (2D error) --GS18 T (

100 static measurements

Enhanced user experience

The Leica GS18 T is the **easiest-to-use** GNSS RTK rover with tilt compensation...

- Free from on-site calibrations
- No need to level the pole
- Automatic start/stop of tilt compensation
- No limitation on tilt compensation range
- Heading-aided 3D visualisation

Leica GS18 T Augmented Stake-Out

- when it has to be right

Enhanced user experience

By storing attitude information with point records, the Leica GS18 T enables **full traceability and complete quality reporting**...

- when it has to be right

Quality report from the Leica Captivate field software

Leica Geosystems AG Heinrich Wild Strasse CH-9435 Heerbrugg St Gallen, Switzerland Phone: +41 71 727 3131

www.leica.geosystems.com

Job details

Job name MDBTEST03 Date 29.08.17 Operator AJOS Sensor type CS20

Measured points

Point ID	Easting	Northing	Height	3D QC	Tilt	Tilt quality	Tilt direction	Tilt direction quality	Tilt compensation use
GS0001	546665.884	5250780.032	425.243	0.023	5°47'12.2"	0°04'37.2"	67°37'61.9"	0°45'13.3"	1
GS0002	546623.734	5250783.937	422.964	0.084					×
GS0003	546664.237	5250781.373	425.836	0.004	2°23'22.1"	0°02'12.4"	132°23'61.2"	0°12'11.3"	1
GS0004	546623.232	5250723.938	425.125	0.098					×

	CC10 T	た View					ූර් Inspector	
d	63101	1/2 Feat	ures 🔒 TPS 💸 GNS	S 🔭 Level	Infrastruct	ure 🔹 Adjustr	ments 👩 Feature C	oding
].			Observations From Station	To V	Til+ [*]	May Til+ [*]	Tilt Direction [*]	Sensor Heading [°]
		*	RTCM-Ref 0014	STAT0017	16.8604	17.2427	185.9133	274.8734
		⊼♀	RTCM-Ref 0014	STAT0100	10.0402	10.7563	295.0456	301.4027
		*	▲ RTCM-Ref 0014	STAT0033	14.9906	15.0279	180.8732	184.6618
		Re	\Lambda RTCM-Ref 0014	STAT0035	11.0813	11.5379	279.9958	179.7060
			🕅 RTCM-Ref 0014	STAT0093	4.0189	5.4650	188.2040	335.9238
ca	L	100		STAT0050	12.0051	14.8526	238.9310	90.5609
ems		36	₩ RTCM-Ref 0014	😵 STAT0019	11.9055	12.3044	261.6544	272.9070
		6° 🗄	\Lambda RTCM-Ref 0014	🧇 STAT0011	24.3436	24.7415	266.7597	359.5545
				😚 STAT0094	6.7794	7.8059	269.0739	2.6027
				STAT0047	25.5266	25.9783	81.3315	172.7648
	▲ Antenna			034	12.8714	13.4524	244.6246	179.1467
	Antenna Height		1.8000	m 🗐 ⁰⁹⁹	11.8109	16.4238	112.4739	319.0290
	Vertical Moving Offset			- m	28.3320	28.6226	7.4414	276.5981
	∡ Tilt							
	Tilt		1	.6.8604 °				T
	Tilt Direction	185.9133°			Edit Ar	ntenna Heigh	it	5 J.J.
1	Sensor Heading		27	4 8734 *	Height	Reading	1.8000 m	Possibilit
	Sensor neuring		27	4.07.54	Carrier	Offset	0.0000 m	the pole
	Local Position				Antenna	a Height	1.8000 m	
	Easting	546'676.2116 m				OK	Canad	
	Northing	5'250'776.6005 m - m				UK	Cancer	
	Ortho. Height							
	Ellip. Height		471	.2921 m				
	Geoid Separation			- m				

Possibility of editing the pole length

Conclusions

• Leica GS18 T is designed to solve customer's pain points in GNSS RTK surveying

Fast

Accurate

Easy-to-use

- Innovative technologies
 - Advanced GNSS signal tracking
 - IMU-based tilt compensation
- Main advantages
 - On-site calibration free
 - Immune to magnetic disturbances
 - Applicable at large tilt angles
 - Heading-aided 3D visualisation
- User benefits
 - Improved productivity and user experience
 - Superior RTK performance

With the Leica GS18 T, Leica Geosystems sets new standards for high-precision RTK through easy-to-use sensor-fusion techniques."

